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The two-dimensional random-bond Ising model is numerically studied on long strips by transfer-
matrix methods. It is shown that the rate of decay of correlations at criticality, as derived from
averages of the two largest Lyapunov exponents plus conformal invariance arguments, differs from
that obtained through direct evaluation of correlation functions. The latter is found to be, within

error bars, the same as in pure systems.

Our results confirm field-theoretical predictions. The

conformal anomaly c is calculated from the leading finite-width correction to the averaged free
energy on the strips. Estimates thus obtained are consistent with ¢ = 1/2, the same as for the pure

Ising model.
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Conformal invariance methods have been important in
the study of critical properties of two-dimensional spin
models [1], providing a number of exact results. Most
applications have been to pure (translationally invariant)
systems. When disorder is introduced, invariance under
conformal transformations at criticality can be said to
be preserved only in an average sense. This raises the
question of whether averaged properties still connect to
quantities in conformal theory, in the same way as their
counterparts for pure systems. Further, it is well known
that performing averages in inhomogeneous systems is a
subtle matter [2—4], owing to the fact that the moments of
local quantities scale with independent exponents. This
is in contrast with the nonrandom case, where one has
constant gap indices.

In the present work, we study properties of the two-
dimensional random-bond Ising model with a binary dis-
tribution of ferromagnetic interaction strengths, each oc-
curring with equal probability. As the transition temper-
ature is exactly known from duality [5,6], one can be sure
that numerical errors due to imprecise knowledge of the
critical point are absent. In strip calculations, the only
sources of such errors will then be the finite strip width
and, for a random system, those arising from the aver-
aging process. The former can be dealt with by finite-
size scaling theory [7,8], whereas one expects to reduce
the effects of the latter by studying large enough sam-
ples. Averages of the following quantities are calculated
at criticality: (i) the two largest Lyapunov exponents;
(ii) spin-spin correlation functions; and (iii) free energy
per spin. From (i) and conformal invariance arguments,
we obtain what is supposed to represent the typical (as
opposed to average) [2-4,9] decay of the correlation func-
tions. As shown below, results from (i) and (ii) differ in
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a way that corroborates the field-theoretic arguments of
Ref. [9]. Numerical data from (iii) are used to estimate
the leading finite-width correction to the bulk free en-
ergy, which is known [10,11] to be proportional to the
conformal anomaly.

We have used long strips of a square lattice, of width
2 < L < 13 sites, with periodic boundary conditions.
In order to provide samples that are sufficiently repre-
sentative of disorder, we iterated the transfer matrix [8]
typically along 10° lattice spacings. At each step, the
respective vertical and horizontal bonds between first-
neighbor spins ¢ and j were drawn from a probability
distribution

P(J,) = l[(S(Jij - Jo) + (5(Jij - T‘Jo)] y

1 0<r<1,

(1)

which ensures [5,6] that the critical temperature 8, =
1/kpT. of the corresponding two-dimensional system is
given by

sinh(28.Jo) sinh(28.rJo) =1 . (2)

Two values of r were taken in calculations: » = 0.5 and
0.01. These roughly represent “weak” and “strong” dis-
order, respectively. The critical temperatures, from Eq.
(2), are T, (0.5)/Jo = 1.641...; T, (0.01)/Jo = 0.5089 ...
[to be compared with T, (1)/Jo = 2.269...]. The choice
of r = 0.5 allowed us to compare our results with those
of Glaus [12], who obtained averages of the two largest
Lyapunov exponents and of the free energy for strips of
L < 8. The reason for fixing » = 0.01 was that, in
site-diluted Ising systems [13], a transfer-matrix ansatz
shows that for concentrations such that 7, ~ 0.27.(1)
one already is crossing over towards percolative behavior.
Analogy thus suggested that, for a critical temperature
of the same order in our case, one might be able to detect
similar effects (if they are present at all).

The procedure for evaluation of the largest Lyapunov
exponent A} for a strip of width L and length N > 1
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is well known [4,12]. Starting from an arbitrary initial
vector vo, one generates the transfer matrices 7; that
connect columns 7 and ¢ + 1, drawing bonds from the
distribution Eq. (1), and applies them successively, to
obtain

o 1 HTV"“
BENT

The average free energy per site is, in units of kT,

fEe(T) = —~A° (4)
The second, third, etc., exponents can generally be ob-
tained by iteration of a set of initial vectors v; orthog-
onal to each other and to vo; care must be taken to or-
thogonalize the iterated vectors every few steps [4], to
prevent contamination with dominant-exponent compo-
nents. Here, the task is easier since we shall be concerned
only with the two largest Lyapunov exponents, and the
Hamiltonian is invariant under global spin inversion. In
order to calculate A2 (A}), it is then sufficient to iterate
vo (v1) which is even (odd) under that same symmetry
[8,12], with no need for intermediate decontamination of
the iterates of v;.

|
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where go = {0} --- 0o} and correspondingly for og; the
bonds that make the transfer matrices 7; belong to C.
For pure systems the 2X-component vectors 1), are de-
termined by the boundary conditions; for example, the
choice of dominant left and right eigenvectors gives the
correlation function in an infinite system [8]. Here, one
need only be concerned with avoiding start-up effects,
since there is no convergence of iterated vectors. This is
done by discarding the first few hundred iterates of the
initial vector vo. From then on, one can shift the dummy
origin of Eq. (8) along the strip, taking ¥ (¥) to be the
left (right) iterate of v (vo) up to the shifted origin.

One performs averages of the correlation function (to
be denoted by (cick)) by shifting the origin along the
strip and accumulating the corresponding results for Eq.
(8). Such averages behave as

(050 k) ~ exp(—R/£™) (9)

For pure systems, £2¥° coincides with the definition of £,
in Eq. (5). Here we shall show that at T, one gets (within
reasonable error bars)

é-ave — L/7r,’7 R

where n = 1/4 is the same as for the pure system, with
no logarithmic corrections such as those for typical cor-

R-1

(00R)c = D ¥(00) 0f (

OQOR 1=0

:’J

(10)
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From AOL and AIL one can form estimates of

E2'=AL—AL (5)
which, at the critical point, is related to the typical decay
of correlations on a fixed sample in the plane [9]. The
correlation functions in this case are predicted [9] to have
the form

(0oor) ~ R™Y4(AInR)™Y/® (fixed sample), (6)
for In(Aln R) large, where A is proportional to the in-
tensity of disorder. If now one tries to fit the standard
relation [1] between correlation length at criticality and
the correlation-decay exponent 7:

n=L/n¢ (7)

which holds for pure systems, Eq. (6) implies that the
result will in fact be an effective exponent, larger than 1/4
by an amount which increases with increasing disorder.
As shown below, this is what arises from our numerical
study.

The direct calculation of correlation functions follows
the lines of Sec. 1.4 of Ref. [8], with standard adapta-
tions for an inhomogeneous system. For two spins in,
say, row 1, separated by a distance R, and for a given
configuration C of bonds, one has

1

wion) | 3 o) (R_ ®)

O0OR =0

7:) ¢(0'R) )

f

relations on a fixed sample [Eq. (6)]. This is again in
agreement with the predictions of Ref. [9].

The total strip length used was N = 10° for L = 2—11
and 5 x 10 for L = 12 and 13 (except for free energy cal-
culations, where N = 10° was used also for the largest
widths). Evaluation, both of Lyapunov exponents and
of averaged correlation functions, involves iterating ini-
tial arbitrary vectors. In order to get rid of start-up
effects, the first Ny = 2000 iterations were discarded.
For Lyapunov exponents, the accumulated averages were
recorded every 200 subsequent steps [12]. From this set
we extracted estimates of exponents and corresponding
fluctuations. This procedure was repeated three times
with different initializations. Final values of exponents
and error bars were taken, respectively, as arithmetic av-
erages of estimates at the end of each run (that is, each
taking into account N — Ny steps), and root-mean-square
averages of deviations (estimated from the sampling de-
scribed above). We calculated correlation functions for
distances R in Eq. (8) ranging from 10 to 200 lattice spac-
ings. The shifted origins were taken 200 columns apart;
thus for each of the three independent runs, and each dis-
tance, one would have close to 500 samples of correlation
functions (250 for L = 12 and 13). As all correlations are
ferromagnetic, their fluctuations are well behaved (com-
pared, e.g., to random-field problems, where frustration
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effects induce large-amplitude deviations from averages
[14]).

Our results are depicted in Figs. 1(a) and 1(b), respec-
tively, for » = 0.5 and 0.01. We have plotted values of
L/7€, both with £ = £, given by Eq. (5) and £ = &2V
of Eq. (9), against 1/L?. The choice of horizontal axis
is inspired by the pure case [15], where it can be shown
analytically that the leading finite-size corrections to n
are proportional to 1/L2.

For weak disorder r = 0.5, Fig. 1(a), both sequences
are linear in 1/L? to a good extent. Data from aver-
aged correlation functions point inequivocally towards
the pure-system value 7 = 1/4, in accordance with the
predictions of Ref. [9], and also with very recent large-
scale Monte Carlo simulations [16]. Owing to the non-
negligible fluctuations for large L, it is not feasible to
try extrapolations of data for that region alone, as is
done when no uncertainties are present [17]. Instead, we
turn to global fitting procedures. The analysis of least-
squares fits of data (taking error bars into account) from
L = Lo to L = 13, with Lo = 2,...,10 indicates that
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FIG. 1. 5 = L/7n¢, with £ = €L of Eq. (5) (triangles) and
& = £*° of Eq. (9) (circles) against 1/L?. The square on the
vertical axis is at the pure-system value n = 1/4. Straight
lines are least-squares fits for L = 4-13. (a) r = 0.5; (b)
r = 0.01.
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x2 stabilizes at ~ 0.19 for Ly = 4-6; estimates of the
extrapolated exponent and of errors are also very similar
in this range. For these values of Ly a rough balance is
attained between the trend towards reducing errors by
including fewer data, and that towards increasing uncer-
tainties by giving more relative weight to fluctuations in
individual data points. The exponent estimate from such
fits is n = 0.250 + 0.002.

Turning to the sequence of Lyapunov exponents for
r = 0.5, an analysis of least-squares fits similar to that
just described gives n = 0.257 £ 0.002, with an even
smaller x? ~ 0.05. If, following Ref. [12], one tries to
plot data against 1/L, the amount of curvature is found
to increase substantially. Taken on their own, the present
results would seem to characterize a nonuniversal expo-
nent, with leading finite-size corrections depending on
1/L?. When data for strong disorder are considered,
however, this picture is not confirmed. As we shall see
below, an overall scenario emerges in which the above
estimate is to be regarded as an effective exponent, sig-
naling the presence of logarithmic corrections of Eq. (6).

For strong disorder r» = 0.01, Fig. 1(b), the sequence
of data from averaged correlation functions points again
close to n = 1/4, though with a larger amount of scatter
than in the previous case. Consideration of least-squares
fits, analogously to that done above, leads to n = 0.235+
0.015. The corresponding x? is ~ 1.8.

Estimates of 1 from Lyapunov exponents for r = 0.01
obviously do not scale linearly with 1/L?; one finds that
the best linear fit is against L™% with ¢ ~ 0.2, in which
case the extrapolate n(L — oo) is ~ 0. We refrain from
attaching much significance to the latter result, as ex-
trapolations with such low powers of 1/L are rather un-
reliable. Instead, we recall that, for a given finite L,
estimates of n are always larger than those for weak dis-
order. This is consistent with the logarithmic correc-
tions for fixed-sample correlations displayed, e.g., in Eq.
(6). Analytical expressions for the correlation length of
energy-energy correlation functions [18,19], though not
directly comparable with the present results, also show
corrections in inverse powers of In L to the pure-system
behavior, whose absolute value increases with disorder.

We now present results for the conformal anomaly. Ta-
ble I shows the negative free energy per site, in units of

TABLE I. Critical free energies per site. Uncertainties in
last quoted digits are shown in parentheses.

AN 1 0.5 0.01

2 1.886426125762 1.0390(6) 2.121(4)
3 1.842546256346 0.9956(6) 2.081(4)
4 1.828157728044 0.9813(5) 2.068(4)
5 1.821819028739 0.9750(4) 2.062(3)
6 1.818468940405 0.9716(6) 2.059(4)
7 1.816478784614 0.9695(7) 2.056(5)
8 1.815198160430 0.9683(4) 2.055(3)
9 1.814324882545 0.9675(4) 2.055(3)
10 1.813702482337 0.9669(5) 2.054(4)
11 1.813243149887 0.9663(4) 2.053(3)
12 1.812894445034 0.9661(4) 2.053(3)
13 1.812623456975 0.9657(3) 2.052(3)
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kpT, as obtained from Eq. (4), at the respective criti-
cal temperatures given by Eq. (2) for r = 1 (pure sys-
tem), 0.5, and 0.01. Data for r = 1 are from Bl6te and
Nightingale [20], and will be useful for comparison among
different fitting procedures. The conformal anomaly c is
related to the finite-width free energy at criticality by
[10,11]

e
6L2 +

We begin by recalling that, for pure Ising systems, finite-
size estimates of ¢ may approach the exact value ¢ = 1/2
either from above or below, depending on what sort of
corrections to the free energy are incorporated. If one
stops at order 1/L?, the sequence of two-strip approx-
imations with L and L + 1 reaches 1/2 from above;
adding the next term (shown numerically by Blote and
Nightingale [20] to be oc 1/L*), convergence of three-
strip (L, L+1, L+ 2) estimates is from below and much
faster. This is illustrated in columns (i) and (ii) of Table
II. The same happens when one performs straight-line or
parabolic least-squares fits of data against 1/L2, using
data from L = Ly, = 2,...,11 up to Lyax = 13, as
shown in columns (iii) and (iv) of that table.

When disorder is considered, Table I shows that the
error bars are a serious obstacle to evaluation of esti-
mates from pairs or triplets of strip widths, especially for
large L. In order to produce reliable results, one would
need free-energy errors typically smaller than one part
in 10° for L 2 10. The strips used would have to be,
respectively, ~ 102 (for » = 0.5) and 10* (for r = 0.01)
times longer than the present value N = 10°, assum-
ing fluctuations to be normally distributed. Though not
unfeasible, such a task would demand a considerable
amount of computer time. We shall then try to extract
information from comparison between least-squares fits
of disordered-system data and their pure-system coun-
terparts. In Table III are shown results of linear and
parabolic fits against 1/L2, for both » = 0.5 and 0.01. In

fL(Te) = foo(Te) - (11)

TABLE II. Conformal anomaly estimates for pure Ising
model. (i) Two-point fits (L, L+1) with 1/L? corrections. (ii)
Three-point fits (L, L + 1, L + 2) with 1/L? and 1/L* correc-
tions. (iii) Straight-line least-squares fits against 1/L* with
data from L to 13. (iv) Parabolic least-squares fits against
1/L? with data from L to 13. Uncertainties in last quoted
digits are shown in parentheses.

L () (ii) (iii) (iv)

2 0.60339151 0.53003814 0.5750(55)  0.51113(211)
3 0.56530418 0.49875466  0.5408(39)  0.49741(13)
4 0.53804550 0.49507433 0.5230(23)  0.49722(27)
5  0.52348887  0.49673455  0.5146(14)  0.49836(18)
6  0.51575527  0.49823978 0.5104(9)  0.49909(10)
7 0.51133776  0.49906829  0.5080(6) 0.49947(5)
8  0.50859245 0.49948159 0.5065(4)  0.49966(3)
9  0.50676022 0.49969077 0.5055(3)  0.49977(2)
10  0.50546906  0.49980307  0.5048(2)  0.49983(1)
11 0.50452116 0.49986769  0.5042(2)  0.49986769
12 0.50380296 0.50380296

TABLE III Conformal anomaly estimates for
bond-disordered Ising model. (i) Straight-line least-squares
fits against 1/L? with data from L to 13; r = 0.5. (ii)
Parabolic least-squares fits against 1/L? with data from L to
13; r = 0.5. (iii) Straight-line least-squares fits against 1/L?
with data from L to 13; » = 0.01. (iv) Parabolic least-squares
fits against 1/L? with data from L to 13; r = 0.01. Uncer-
tainties in last quoted digits are shown in parentheses.

L @) (ii) (iii) (iv)

2 0.569(4) 0.511(3) 0.53(3) 0.506(10)
3 0.536(10) 0.498(3) 0.52(7) 0.508(20)
4 0.521(16) 0.499(6) 0.51(12) 0.533(45)
5 0.516(23) 0.495(13) 0.52(17) 0.503(90)
6 0.509(46) 0.492(26) 0.51(34)

7 0.502(68)

general, we found that fits starting at values of L larger
than those displayed gave such large errors as to be ren-
dered meaningless. For weak disorder, columns (i) and
(i), the overall trends closely resemble those found in the
pure case of Table II, including the approach of central
estimates to ¢ = 1/2 (from above or below, depending
only on the type of fit), though of course with much
larger errors. Results in column (i) are essentially the
same as in Ref. [12]. As expected, error bars are even
larger for strong disorder, columns (iii) and (iv); though
straight-line fits deteriorate very quickly, one still has
reasonably well-behaved estimates from parabolas. How-
ever, if monotonic approach to ¢ = 1/2 from below is
present in the latter sequence, it is utterly smeared out
by fluctuations.

Our results can be summarized as follows.

(i) Averaged correlation functions at criticality of the
disordered system decay with pure power-law behavior,
the same exponent 7 = 1/4 of the pure Ising model. This
is contrary to early results, according to which disorder
would lead to n = 0 [21], but supports field-theoretical
[9] and Monte Carlo [16] evidence. Similarly, very re-
cent results for site-diluted systems [22,23] indicate that,
although susceptibility (7y) and correlation length (v) ex-
ponents seem to be concentration dependent, the ratio
v/v = 2 — 5 remains at 7/4.

(ii) Typical (as opposed to averaged) correlation de-
cay, as obtained from the two largest Lyapunov expo-
nents, behaves consistently with the presence of (non-
self-averaging) logarithmic corrections [9].

(iii) Conformal anomaly estimates for the disordered
Ising model behave in the same way (within error bars)
as the corresponding ones for pure systems. We are thus
led to state that no evidence has been found that ¢ # 1/2.
However, our results are not accurate enough to detect
logarithmic corrections predicted by field theory [18].

One might view the estimate = 0.235 + 0.015, from
averaged correlation functions for » = 0.01, as signaling
a crossover towards percolationlike behavior (for which
[15,24] 7, = 5/24). Though this is indeed expected
[13,25] to occur sufficiently close to T = 0 (i.e., r = 0),
a systematic investigation of several points in that re-
gion is needed in order to sort out finite-size effects from
r-dependent ones. We intend to do so, as part of a forth-
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coming, broader-ranging study [26] which will include
generalizations of a calculational procedure initially de-
vised for site-diluted problems [13] to random-bond and
random-field systems.
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